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A graph-theoretical method for the calculation of the sextet polynomial is proposed. The 
method is easy and generally applicable. It is based on the construction of the Clar graph and on 
the calculation of its independence numbers.

The discovery of the sextet polynomial by Hosoya 
and Yamaguchi [1] gave a strong impetus to the 
development of Clar's theory of aromatic sextets 
[2, 3]. The sextet polynomial concept stimulated 
numerous further investigations of the topological 
properties of benzenoid molecules [4-8], In spite of 
this, no systematic and general method for con­
structing the sextet polynomial was reported so far 
in the literature. The original procedure [1], namely 
trial-and-error constructing and counting the Clar 
formulas, becomes a very awkward and error-prone 
task in the case of large (or even medium size) 
benzenoid molecules.

Some efficient computation techniques were pro­
posed for the sextet polynomials of cata-condensed 
benzenoid systems [5], but these are inapplicable in 
the case of peri-condensed systems.

In the present paper we offer a novel graph- 
theoretical method for computing the sextet poly­
nomials, which is well applicable to both cata- and 
peri-condensed molecules. Our method is based on 
the Clar graph concept, which was elaborated in 
a previous communication [6], In that paper the 
mathematical results, necessary for the formulation 
of the method can be found. Therefore we shall 
completely follow the terminology and symbolism 
used in [6] and the reader should consult [6] for 
necessary details.

Hence the benzenoid system under consideration 
will be denoted by B. its hexagons by hu h2, ..., h„,
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its sextet polynomial by

<7(B) = I> (B . k) xk,
k

where 5(B. Ar) is the A>th resonant sextet number of 
B.

Preliminaries

a) The independence polynomial

Let G be a graph with n vertices. Let these 
vertices be labelled by v\, v2, ..., v„. The collection 
of the vertices t iv r,2, ..., vik {k ^  2) of G is said to 
be an independent vertex set of G, if no two among 
these vertices are adjacent in G. This independence 
set has cardinality k. The number of independent 
vertex sets of G with cardinality k is denoted by 
o(G, A:). Hence o(G, k) is the number of selections 
of k independent vertices in G. This number will be 
called the A-th independence number of G.

In addition, we define o(G, 1) = n and o(G, 0)= 1 
for all graphs G. The independence polynomial of 
the graph G is then

m
a>(G)= Z  o(G ,k)xk 

k=0
with m being the greatest value of the index k, for 
which the Ar-th independence number is non-zero.

The independence polynomial of an arbitrary 
graph can be easily determined using the following 
two results [6]:
Lemma 1. Let v be a vertex of G and Av be the 
set containing v and all vertices being adjacent to v.
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Then the independence polynomial of G conforms 
to the recurrence relation

co(G) = co(G — v) + x to(G — Av). (1)
Lemma 2. Let the graph G be composed of two 
disjunct components Gi and G2. Then

a>(G) = co (G i) • co (G2) . (2)
For the application of the above two lemmas one 
will often need the following independence poly­
nomials:

w(0) = 1,
u'(Fi) = 1 + x ,
co(P2) = 1 + 2.v,
co(P3) = 1 + 3.y + .y2,
co(P4)=  1 +4.Y + 3.V2,
(o(Ps)=  1 + 5x + 6x2 + x \
co{P6) = 1 +6.V+ 10.y2 + 4.y3,

where 0 symbolizes the "empty" graph (i.e. the 
graph without vertices), whereas Pn is the pat with 
n vertices:

Note that co(Pn) = co (Pn-\) + x co (F„_2) or, what is 
the same, o(Pn, k) = o(Pn-\, k) + o(P„_2, k -  1). 
This recurrence relation is, of course, a special case 
of (1). It enables a rapid computation of co(Pn) for 
arbitrary values of n.

As an example we determine the independence 
polynomial of the graph G] (see Figure 1). Ap­
plying (1) to one of the central vertices of Gj we get

w(G, ) = co |

An analogous argument gives

Therefore

w(G,) = ojfcT"*^ + 2x-w(p,)
V J  *

Here and later the vertex on which we apply 
Lemma 1 is being indicated by a full circle. Now, 
using (1) we have further

and by (2),

Hence

Cj(P,) + 2x • U)( P]) cj( F̂) + X Oj( 0 ),

w(G,) = co(P3)2+ 2x [co(P])co(P2) + co(P3)] 
+ x2 co (0),

and taking into account the above given expressions 
for co(Pn) we arrive at the final result

ftj(Gi) = 1 + 10.x + 24.x2 + 12.y3 + .Y4.

An alternative technique for the calculation of the 
independence numbers is given in Appendix 1.

b) The Clar graph

According to [6], the Clar graph of the benzenoid 
system B is the graph C(B) with n vertices. The 
vertices vr and vs are adjacent in C(B) if the hexagons 
hr and hs are not mutually resonant in B. For 
example, the Clar graph of ovalene is G |, whereas 
the Clar graph of kekulene is G2 (see Figure 1).

The construction of the Clar graph is explained in 
detail in [6]. After a little exercise the construction 
of C(B) becomes a routine task even for benzenoid 
systems as large as ovalene or kekulene.

A special method for building of the Clar graph 
of a cata-condensed system will be presented later 
on.

G3=C(B3) C(B3) = C(B3)-V5-V8
/ \ + x / °-°v x. / o\ X2.UJ( )̂ Fig. 1. Ovalene (B,), kekulene (B2), 2.3,4.5-dibenzoterry- 

1 \V-o J+ x "v ' * T lene (B3), their Clar graphs and their reduced Clar graphs.
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The graph C(B)*, called the reduced Clar graph 
of the benzenoid system B. is obtained from C(B) 
by deleting the vertices which correspond to non- 
resonant hexagons of B. (A hexagon hr of B is non- 
resonant if there is no Clar-type formula in which a 
resonant sextet is located in hr.)

For example, the hexagons h$ and /;8 in dibenzo- 
terrylene (see Fig. 1) are non-resonant.

If all the hexagons in B are resonant (which is the 
case with the great majority of chemically relevant 
benzenoid systems), then

C(B)* = C(B).

In particular, the above relation holds for all cata- 
condensed benzenoid systems (see Appendix 2).

The Main Result

According to Theorem 1 of [6],

ct(B) = a; (C(B)) -  (n -  x ,

where is the number of resonant hexagons of B. 
Now, if a hexagon hr is not resonant in B, then vr — 
the corresponding vertex of C(B) -  is adjacent to 
all other vertices of C(B). Therefore vr will not be 
the element of any independent vertex set of C(B). 
Then the deletion of the vertex vr from C(B) will 
not affect the independence numbers of C(B). Thus 
we conclude:

o(C(B), k) = o(C(B)*, k)

for all k ^  2. On the other hand,

o (C(B), \) = n whereas o(C(B)*, 1) = nK .

Since by Theorem 1 from [6],

s(B, k) = o(C(B). k)

for k ^  2 and

s( B,1) = kr ,

we immediately see that

<t(B) = W(C(B)*) (3)

for all benzenoid systems B. Equation (3) can be 
understood as the main result of the present paper.

The importance of (3) lies in the fact that the 
problem of the calculation of the sextet polynomial 
of B is now transformed to the much easier problem

c) The reduced Clar graph of the calculation of the independence polynomial 
of the reduced Clar graph. Since the independence 
polynomials are obtained by straight-forward 
graph-theoretical reasoning, we have an efficient 
and general algorithm for computing the sextet 
polynomials.

In particular, our algorithm requires the following 
three steps.

(i) Construction of the Clar graph of B.
(ii) Construction of the reduced Clar graph.

(iii) Determination of the independence polynomial 
of the reduced Clar graph.

By (3), the polynomial obtained in step (iii) is the 
sextet polynomial of B.

Since C(B])* = G], we have already determined 
the sextet polynomial of ovalene:

a (B ]) = 1 + 10 .v + 24 x2 + 12.y3 + .y4.

The sextet polynomial of 2.3,4.5-dibenzoterrylene 
(B3) is immediately obtained using (2):

ct(B3) = co(C(B3)*) = co(P4) " co (P2) • co (F2) .
Thus

ct(B3) = 1 + 8.x + 23 .y2 + 28.y3+ 12.y4.

As a third illustration we compute the sextet 
polynomial of kekulene.

= cj(PI)o(P3) + X co(P,) = 1+5X+5X2 + X3
we obtain finally

CT(B2) = (1 + 5.y + 5.y2 + .y3)2
+ 2 .y ( 1 + 3 .y + a-2)2 + a-2 ( 1 + .y)2 ,

i.e.
a (B2) = 1 + 12 .y + 48 .y2 + 76 .y3 4- 48 .y4 

+ 12.y5 + .y6.
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Note that the calculation of f7(B2) by the previously 
known enumeration method [1] would be an 
enormously cumbersome task — one would have to 
draw 198 Clar-type formulas of kekulene, i.e. more 
than two thousand hexagons. On the other hand, the 
present technique requires only a few minutes of 
work and just one sheet of paper.

Cata-Condensed Systems

In this section we consider an important special 
case, namely the cata-condensed benzenoid mole­
cules. For these systems the general algorithm de­
scribed in the previous section can be significantly 
simplified. First of all, for all cata-condensed sys­
tems the Clar graph and the reduced Clar graph 
coincide (see Appendix 2). Hence step (ii) can be 
omitted.

a) Non-branched cata-condensed systems

The hexagons h \,h2, . . . ,h n of a non-branched 
cata-condensed benzenoid (NBCCB) molecule can 
be labelled so that hr and hr+\ are adjacent for r = 1, 
..., n -  1. The hexagons h\ and /?„ are thus terminal.

The non-terminal hexagons in a NBCCB system 
can be anellated in just two ways, viz.

L-mode A-mode
Therefore, an ordered «-tuple of symbols L, A, the 
so called L, A-sequence, can be associated to every 
NBCCB molecule [7], The L, A-sequence of the 
molecule B will be denoted by <B). Hence

<B ) = ( S ],S 2, . . . ,S n),

where S\ = Sn= L, and Sr = L if the hexagon hr of B 
is annelated in L-mode, and Sr = A if the hexagon 
hr is annelated in A-mode (r = 2, 3 ,..., n — 1). The 
general form of an L, A-sequence is

<B) = L'1 A L'2 A L'3... A L'm ,

where L2 means LL, L3 means LLL etc. E.g., the 
hexagons of B4 are labelled as follows:

B4

Therefore
<B4>=LLLAALAALLLL=L3AL0AL'AL°AL4,

which means that /] = 3, t2 = 0, /3 = 1, t4 = 0, 15 = 4 
and m = 5.

We distinguish the following m subsequences of 
<B>:

<B 1> = L W ,
<B A:) = AL'*A , k = 2...... m -  1 ,
<B m) = AL'm.

In order to transform the L, A-sequence of B into the 
corresponding Clar graph we have to apply the 
following rules.

i) The vertices of C(B) correspond to the symbols 
L, A of (B).

ii) The vertices corresponding to each (B k), 
k = 1, 2,..., m, form a complete graph, i.e. every two 
vertices corresponding to the same (B k) are con­
nected.

iii) The vertices which do not simultaneously cor­
respond to any subsequence (B k) are not con­
nected.

The above rules are the consequence of the fact 
that no two hexagons of B, corresponding to the 
same (B k) are mutually resonant, whereas hexa­
gons corresponding to different (B s are neces­
sarily mutually resonant.

For example, in the case of B4:

<B4 1 )= (5 1,5 2,53 ,S 4),

<B4 2> = (S 4,S 5),
<B4 3>=(S5,S 6,S 7),
<B4 4> = (S 7,S 8),
<B4 5) = (Sg, Sg, Sio, S n , S12) ,

and therefore C(B4) has the following structure

C(BJ

bj Branched cata-condensed systems

We may still use the L,A-sequence formalism 
with an additional convention that a hexagon which 
is fused simultaneously to three other hexagons (i.e. 
a branched hexagon) is assigned the symbol A.
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Thus for the benzenoid system B5 we have S4=S7=A 
and Sr = L otherwise:

We have the subsequences

<B5 \} = (S u S2,S 3,S t) , 
<B5 2>=(S4,S 5,S 6,S 7), 
<B5|3 > = (S 7,S 8,S 9), 
<B5 4) = (S4, 5io, 5 n , Si2),

from which the construction of the Clar graph is 
immediate:

Appendix 1

An Alternative Method for the Calculation 
of the Independence Numbers

We present here a pruning method as an alter­
native to the recurrence relation (1). The method is 
efficient for graphs with moderate number of ver­
tices (eight vertices or less).

1. Define two operators P\ and P2, such taht P\ 
prunes a vertex (any vertex) in G plus all other 
vertices connected to it, and P2 prunes that vertex 
upon which P\ operated. The operations P\ and P2 
must follow one another.

2. A pruning sequence is performed on G until a 
terminal graph GT is reached. A terminal graph is 
defined as

Pi GT= 0 and P, F2 GT = 0,

with 0 denoting the empty graph.
3. The graph resulting in the first pruning se­

quence will be denoted as PG. its order (i.e. the 
number of its vertices) being P G . Observe that

p4G6

p3G6 
|p3G6|= 5

p g6
|p2g6|=12

pG6
IpGbI-W

Fig. 2. Calculation of the independence numbers of the 
Clar graph of tetrabenzoanthracene using the pruning 
method.

P G is a disconnected graph. It can be shown that 

P G = o (G, 2).

4. The graph FG is subjected to another pruning 
sequence to give P2 G, the order of which is P~ G . 
Then

P2G = o (G, 3) .

5. A third pruning sequence is performed on P2 G 
to give P3 G, and so on until all components of a 
PkG are terminal graphs. Then P^+1G = 0. In 
general, for k ^  1,

PkG = o (G, F + 1)

and. in addition.

/>oG = G = 0 (G, 1).

The pruning method is illustrated on Fig. 2 on the 
example of G6, the Clar graph of tetrabenzoanthra­
cene, B6.

B6 Gs = C(B6)
Whence

(G6) = 1 +7.Y + 14a2 + 12A'3 + 5 A4 + A5 .

The order of the pruned graph is independent of 
the sequence of pruning.
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Appendix 2

We prove that for cata-condensed benzenoid sys­
tems the Clar graph coincides with the reduced Clar 
graph. In order to do this it is sufficient to show that 
all hexagons in a cata-condensed benzenoid mole­
cule are resonant. Let h be a hexagon in a cata- 
condensed system B. In the general case B has the 
following structure:

Here A|, A2 and A3 denote three benzenoid sub­
systems attached to h. A, is a cata-condensed system 
with, say, hexagons. / = 1. 2, 3.

If ni = 0, then the respective side group is, of 
course, missing. A, has 4/7, + 2 vertices, all of which 
belong to the perimeter of A, and two of which 
belong also to h. Let the vertices of A, be labelled 
by it,l, v/,2. viMn i'/.4«i+1 and viM%+2 so that vi>r 
and are adjacent for all r=  1, 2 ,..., 4«, + 1
and so that r,j and r,-,4„j+2 belong to h. In order to 
demonstrate that h is resonant, we have to verify 
that B -h  has at least one Kekule structure. This is 
indeed the case. Such a Kekule structure is obtained 
if we set double bonds between v^r and r,>+i for 
/•= 2, 4 ,..., 4/j, and i = 1,2, 3.
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